“We Don’t Know What We are Talking About” – Nobel Laureate David Gross

At the 23rd Solvay Conference in Brussels, Belgium. Amongst the many topics covered in the conference was the subject matter of string theory. This theory combines the apparently irreconcilable domains of quantum physics and relativity. David Gross a Nobel Laureate made some startling statements about the state of physics including: “We don’t know what we are talking about” whilst referring to string theory as well as “The state of physics today is like it was when we were mystified by radioactivity.”

The Nobel Laureate is a heavyweight in this field having earned a prize for work on the strong nuclear force and he indicated that what is happening today is very similar to what happened at the 1911 Solvay meeting. Back then, radioactivity had recently been discovered and mass energy conservation was under assault because of its discovery. Quantum theory would be needed to solve these problems. Gross further commented that in 1911 “They were missing something absolutely fundamental,” as well as “we are missing perhaps something as profound as they were back then.”

Coming from a scientist with establishment credentials this is a damning statement about the state of current theoretical models and most notably string theory. This theoretical model is a means by which physicists replace the more commonly known particles of particle physics with one dimensional objects which are known as strings. These bizarre objects were first detected in 1968 through the insight and work of Gabriele Veneziano who was trying to comprehend the strong nuclear force.

Whilst meditating on the strong nuclear force Veneziano detected a similarity between the Euler Beta Function, named for the famed mathematician Leonhard Euler, and the strong force. Applying the aforementioned Beta Function to the strong force he was able to validate a direct correlation between the two. Interestingly enough, no one knew why Euler’s Beta worked so well in mapping the strong nuclear force data. A proposed solution to this dilemma would follow a few years later.

Almost two years later (1970), the scientists Nambu, Nielsen and Susskind provided a mathematical description which described the physical phenomena of why Euler’s Beta served as a graphical outline for the strong nuclear force. By modeling the strong nuclear forces as one dimensional strings they were able to show why it all seemed to work so well. However, several troubling inconsistencies were immediately seen on the horizon. The new theory had attached to it many implications that were in direct violation of empirical analyses. In other words, routine experimentation did not back up the new theory.

Needless to say, physicists romantic fascination with string theory ended almost as fast as it had begun only to be resuscitated a few years later by another ‘discovery.’ The worker of the miraculous salvation of the sweet dreams of modern physicists was known as the graviton. This elementary particle allegedly communicates gravitational forces throughout the universe.

The graviton is of course a ‘hypothetical’ particle that appears in what are known as quantum gravity systems. Unfortunately, the graviton has never ever been detected; it is as previously indicated a ‘mythical’ particle that fills the mind of the theorist with dreams of golden Nobel Prizes and perhaps his or her name on the periodic table of elements.

But back to the historical record. In 1974, the scientists Schwarz, Scherk and Yoneya reexamined strings so that the textures or patterns of strings and their associated vibrational properties were connected to the aforementioned ‘graviton.’ As a result of these investigations was born what is now called ‘bosonic string theory’ which is the ‘in vogue’ version of this theory. Having both open and closed strings as well as many new important problems which gave rise to unforeseen instabilities.

These problematical instabilities leading to many new difficulties which render the previous thinking as confused as we were when we started this discussion. Of course this all started from undetectable gravitons which arise from other theories equally untenable and inexplicable and so on. Thus was born string theory which was hoped would provide a complete picture of the basic fundamental principles of the universe.

Scientists had believed that once the shortcomings of particle physics had been left behind by the adoption of the exotic string theory, that a grand unified theory of everything would be an easily ascertainable goal. However, what they could not anticipate is that the theory that they hoped would produce a theory of everything would leave them more confused and frustrated than they were before they departed from particle physics.

The end result of string theory is that we know less and less and are becoming more and more confused. Of course, the argument could be made that further investigations will yield more relevant data whereby we will tweak the model to an eventual perfecting of our understanding of it. Or perhaps ‘We don’t know what we are talking about.’

Author Bio
Michael Strauss is an engineer and author of Requiem for Relativity the Collapse of Special Relativity. To contact the author visit: http://www.relativitycollapse.com

Article Source: http://www.ArticleGeek.com – Free Website Content

Advertisements

About Granger Whitelaw

Granger Whitelaw founded the Rocket Racing League along with partner, Peter Diamandis in 2005. See more information at http://www.grangerwhitelaw.com/blog and http://grangerwhitelaw.brandyourself.com View all posts by Granger Whitelaw

2 responses to ““We Don’t Know What We are Talking About” – Nobel Laureate David Gross

  • Ronjun

    The title is we don’t know what we are talking about and it is a little catchy since anyone would be curious with the title. I think it is about physics and something and I haven’t read all of it but I think it is about creation or something a collide of a universe or some planets or particles in universe but I don’t understand it that much. Anyway this is a free blog and I would like to thank you for letting it as a free blog always and it is nice reading some of your articles.

  • JC

    One of the theories that I like about physics is the string theory and though I haven’t experienced it in my college since it is not in my curriculum and I am not a physics major but really the string theory is a nice one and it is indeed combines the apparently irreconcilable domains of quantum physics and relativity, and it is all about that just like what is said on the above article and yeah it is a very broad topic.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: